Almost Hermitian structures induced from a Kähler structure which has constant holomorphic sectional curvature
نویسندگان
چکیده
منابع مشابه
Strictly Kähler-Berwald manifolds with constant holomorphic sectional curvature
In this paper, the authors prove that a strictly Kähler-Berwald manifold with nonzero constant holomorphic sectional curvature must be a Kähler manifold.
متن کاملPara-Kahler tangent bundles of constant para-holomorphic sectional curvature
We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...
متن کاملstrictly kähler-berwald manifolds with constant holomorphic sectional curvature
in this paper, the authors prove that a strictly kähler-berwald manifold with nonzero constant holomorphic sectional curvature must be a kähler manifold.
متن کاملCurvature of Almost Quaternion- Hermitian Manifolds
We study the decomposition of the Riemannian curvature R tensor of an almost quaternion-Hermitian manifold under the action of its structure group Sp(n)Sp(1). Using the minimal connection, we show that most components are determined by the intrinsic torsion ξ and its covariant derivative ∇̃ξ and determine relations between the decompositions of ξ ⊗ ξ, ∇̃ξ and R. We pay particular attention to the...
متن کاملAlmost power-Hermitian rings
In this paper we define a new type of rings ”almost powerhermitian rings” (a generalization of almost hermitian rings) and establish several sufficient conditions over a ring R such that, every regular matrix admits a diagonal power-reduction.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2003
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-03-07132-6